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Abstract

Two methods have been used to speed up the execution of computation. One is the

technology insertion and the other is new architectural concepts. Regardless of the type

of architecture development the result is a parallel computer systems with a large
1A'

%'
S number of processing elements. The communication requirements between the .

processing elements will lead to the need for a large interconnection networks.

In this research a property of interconnection networks called partition ability is

4 studied. The advantages and uses of partitionable networks were described in number

of papers. The partition ability informally means that the system can be divided into

several parts each of which has certain amount of behavioral independence.

Several researchers have analyzed both topologically regular and irregular

interconnection networks with respect to the partition ability property.

In this work the concern is synthesis techniques of partitionable networks. Two

algorithms are developed each capable of synthesizing a class of partitionable

interconnection networks. The generated classes are informally described.

oric

I Introduction op

Two methods have been used to speed up the execution of computation. One is the

technology insertion and the other is new architectural concepts. Regardless of the type '

of architecture development the result is a parallel computer systems with a large PE

number of processing elements. The communication requirements between the (t

processing elements will lead to the need for a large interconnection networks.
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In this research a property of interconnection networks called partitionability is

studied. The partitionability informally means that the system can be divided into

several parts each of which has certain amount of behavioral independence.

The partitionability of Banyan networks was shown in [Gok76, GoL73]. The

partitionability of the Cube network was anplyzed in [SiM8lb] and ADM in jSiM8la].

Partitionability of topologically arbitrary single stage networks was studied in [SeS85].

The quotient property (which is related to partitionability) of several well known

networks was studied in [FiF82].

As it can be seen, most work has been done in analysis and little has been done in

the synthesis area. In this paper the synthesis of multistage partitionable

interconnection networks is studied. Two algorithms are developed each of which is

capable of generating a class of partitionable networks.

Partitionable networks have the following uses and advantages. They can be used

to allocate a proportional number of processors to the computational and

communication needs of a task in a multitasking system. This method of allocation is

used in systems such as PASM currently developed at Purdue University [SiSS1]. The
01'

partitioning property provides a natural protection amongst users in a multiuser

environment. That is accomplished by giving each user a segment of the system which

will provide a hardware protection amongst users. The implementation of the routing

of the data path and control is efficient on VLSI substrate or on printed circuit board

(PCB). In the case of fault in a part of the network, a method of graceful degradation is

possible by an easy migration of the program to the correctly operating sections. The

partitionable network forms the basis of a certain class of fault tolerant networks. The

network Extra Stage Cube [AdS82] has a type of fault tolerance that can be traced to

the necessary condition of partitionability of the core of the network. The Extra Stage

Cube is single switch, single link fault tolerant however the idea can be generalized into

a* - N
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multiple faults using a properly partitionable network core. In the Star system the

baseline partitionable network is used because of its ability to establish partitions

corresponding to the computational structures of the algorithm [AgY85, WuF82]. The

partitionable property of networks is an essential element in the modular expansion of

dynamic systems [ViK80].

i. -°

U Overview

In Section III the basic notation and definitions are presented. In Section IV the

necessary background on single stage network is presented and partitionability

properties of single stage networks are described. In Section V the multistage networks -'

are discussed. A graph/algebraic model is developed and two classes of partitionable

networks are defined. A methodology to synthesize each class is presented and proven

correct. In Section VI the global conclusion is presented.

4.

IH Basic Concepts

In this section, basic definitions and notation needed as the background for the rest

of the paper are introduced. Some of the definitions can be found in books on basic

abstract algebra [Han68, Her75] and graph theory (BoM76, Har6g9, however are -

included here for completeness. This material was developed in [SeS84].

Let the set of input labels of a graph/algebraic structure be denoted by V and the

set of output labels of the structure be denoted by V0 . All graph/algebraic structures

defined in this paper over V Y Vo will assume that VI f Vo = o, vi o, \ , 0.-.o

Z..
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where 0 is the empty set and V xV = {<vaVb> Iva E V1, Vb E Vo}.

The following notation will be used throughout this paper. The symbols are

enclosed in a pair of double quotation marks.

,'" - delimiters for set. "(,")" - function application and grouping of operations.

- delimiters for n-tuple. "[","]" - used as defined in context.

Definition 8.1:

Let A be a set, then P[A[ A {B B C A} is the power set of A.

Definition 8.2: ,

Let Cm E P[VI )< Vol. then C. is an I/0 correspondence over V x V 0 .

Definition 8.8:

Let Cm E P[VI x Vo] such that <Va,Vb>, <Vc,Vd> E Cm v b  vd, then the N

Cm is a nondestructive I/0 correspondence over V x VO . (Physically, Cm

represents one state of a network).

Definition 8.4:

Let C[V I x Vo] A {Cm E P[VI x Vo] Cm is nondestructive}. Then C[V 1 × Vol

is called the C-set over VI x VO.

Definition 8.5:

Let Cm E C[V I  Vo], then s(Cm) A {Val <VaVb> E Cmj is the source set of .

I.M

Definition 8.6:

Let Cm E C[V i x Vo], then d(Cm) A {Vj <VaVb> E Cm} is the destination

set of Cm.

19

. .5
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Definition 8.7:

Let C = {Cm m=1,2,...n} C C[VI x Vol, then s(C) U U s(Cm) is the source ,°.
m

set of C and d(C) U U d(Cm) is the destination set of C.
m

Definition 8.8:

Let V be a set of labels. Let E C V x V, then G = <V,E> is called a graph.

IV Single Stage Interconnection Networks

This section consists of three subsections. The first subsection describes the model

of single stage network used later to construct multistage networks. The second

subsection defines and discusses the basic composition and decomposition of networks.

The third subsection uses the decomposition concepts to define partition ability of single

stage networks which is used in the next section to discuss the partitionability of

multistage networks. Partitionability informally means that the network can be

decomposed into two parts with certain degree of independence. The definitions and .

theorems discussed in this section were developed in [SeS84, SeS85 and are presented

here (without proofs) for completeness.

In this subsection, a formal graph/algebraic model of an interconnection network is

presented. Graph models for analyzing networks have been used by other researchers.

For example, in [Gok76, GoL73, LiM82, Upp8l] they are used to analyze regular SW 

Banyan networks, and in [FiF82] they are used to study the partitioning of regular ' '

networks. The model presented here differs from [Gok76, GoL73, LiM82, Upp8l] and II' m

[FiF82] by being completely general so that it can be used to describe an arbitrary.

topologically regular and irregular, interconnection network. The model is similar to

Sdo-.• S- .. -.. • . o - . - - ~ . , - •. , - - d - • ° . ° - ,. - ,



the one used by [MaM81] to study time space tradeoffs.

Definition 4.1: C> eu ta

Let K --- < C> be such that: -'

(1) c c clx %V.

(2) V,= s(C).

(3) V O  d(C).

If JCJ, 2 then K = <C> is an I/O representation of a reconfigurable

network over V, x VO . If IC[ = 1 then K = <C> is an I/0 representation of

a fixed network over 1," x VO .

Physical implications: <Va,Vb> E Cm., Cm E C represents the network moving data

from input Va to output vb when the state of the network is Cm. C represents the set of

all possible states of the reconfigurable network. For an example of a topologically

arbitrary interconnection network see Figure 1. The example has the following

parameters:

V,= {UaUb.uc},Vo = {vo,v,}, CO = {<ua,vo> <ua,v,>}.

C, {<ua,vo>, <ub,vl>}, C2 = {<ua,v,>, <U,,vo>},

C = {Co,C,,C,}. K =<CoC,,C21>.

Definition 4.2:

Let K[V I x VO] A {K IK = <C> is a network over V x Vo}. Then -

K[V1 , Vo] is called the K-set over I1 x Vo.

Definition 4.8:

Let K' E K[V'xV'], K' - <C'>, and K2 E K[V'xVg], K2 <C>, be two

networks such that:

.~. .* .. . .,- ... .... .. .• ,, • . - _ 5 . , .-.. .. . ... . . \ Z --
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(1) VIC V1, V C V2

(2) V CMEC' 3C2EC2 D:C -C 2

Then K' is subnetwork of type c of K . Notation: K' Cc K2. The other types

are not used here and therefore they are not presented.

This subsection describes an "intra-stage" composition and decomposition of single

stage networks. The discussion here is presented for the composition of two networks

into one and the decomposition of one network into two. However, it can be
.-.. -.

generalized into the composition of n networks into one and decomposition of one

network into n, n > 2. What is meant by the intra-stage composition of two networks

K' and K is that V fnV, = o and V flV =-o. Similarly, the intra-stage

decomposition of K into two networks K' and K2 will result in n fl V2 = 0 and % A

V, f Vg = 0. Two types of composition (decomposition) are described. One, the a-

composition (decomposition) corresponds to the physical situation where the controls of

the individual subnetworks of the network are independent. The other type is the r-

composition (decomposition), which corresponds to the physical situation where the

controls of the individual subnetworks of the network are dependent upon one another.

Definition 4.4:

Let K' E K[V' x V'], K' = <C'>, and K' E K[V? x V2], K 2 <C 2 >, be

two networks such that: (V u V ))fl (V? U. V) = 0. Define o'-map as

follows:KaK 2 = <C,>or<C2 > A <{cl UCI C EC1,C2EC 2 }>.

This describes the composition of two networks where the controls of the two networks

are independent from one another.

N. V.

•V



~~Definition 4.5:.
IF I

Let KE K[V1 x Vol be a network. Let aK,K, ... K 1 0-

of networks such that: K Cc K aKa • K . .'

-- a

_ ~~Notice that this implies V, = -- "V and VO = ---- ,JVO. Then .-,

(1) K a K fn is called a -decomposition of K.

(3) K is called a component network of K (K' is maybe itself decomposable). as

In this second part of this subsection, the -composition and decomposition of two

networks will be discussed. In the a-composition, the two networks keep independent

controls, that is if C1 is selected in K , an arbitrary correspondence Cie can be selected

neKsu. In the a-composition, the two networks have joint control, that is if C is

selected in K 1, the corresponding C2 must be selected in K2 .

Definition 4.6:
2 [V2

Let K'EK[VIxV'], Kl=<C'>, and K EK[V xV0, K- <C-> be two

networks such that:

(a) (V WU (V,- U Vn) 0, and (b) IC'I = 1C21
Define Ta -map as follows:

(1) Define a: C'--GC, map 1:1 and onto.

'' (2) K 1 _IK2 <C'>r<C > <{CIU C2 I a(1)=C2 Cl(2 B, "(r)Cr C' E C',"-:

Definition 4.7:-

Let KEK[Vi x Vo] be a network. Let {K',K2,...,Kn K'EKIV, xVb']} be a set

of networks such that: K=KlraK2 r' ... K. Then (1) K' r, K2  "-'K. Ki -

called a r-decomposition of K.

(3) K' is called a component network of K. (K' maybe itself decomposable).

do.4

*" * "" ° ' " ",r ","".g"" "*o°",-"°""°" ° J' ,' 
° 

"" "" "° " "- " , - ', " ° °, , ". "• ". " '" " * . - '' " .",'-°' ¢.% "" 
"  

• " , °% .% '° °-€"* '- *- .- ,

% .° % - . % " . ' .% . %," .% % " % % % " • % -,', - ' , . . , , . %. ,, ., . , 7- *
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Definition 4.8:

Let K E K[V x Vo], K = <C> be a network. K is a prime network iff K

cannot be decomposed as K Cc K' a K2 .

Definition 4.9:

Let K E K[VI x Vo], K = <C> be a network. If there exist K1 E K[V X V]"

K1- <C'>, and K2  K[V? X V2 ], K 2 = <C2>, two prime networks such

that: (1) VI UV? = V1, and (2) V I -JV = Vo, then:

(1) If K 1 r,, = K, then K is a r-partitionable network. '

(2) If K' a K(2 K, then K is a strictly a-partitionable network.

. (3) If 1 a K " Dc K, then K is a a-partition able network.

Note that r-partitionable implies C = C'] -C 2 [ strictly a-partitionable implies

1C I = I C1 I IC2 1, and a-partitionable implies fC < JC'1 ( [ 1c2l.

In this subsection some basic concepts required to discuss the partitionability

property will be presented. The underlying graph of a network is defined and its

relationship to partition ability and other properties are discussed.

.: Definition 4.10:

Let K E K[V, x Vo], K = <C>. Let G[V1 x Vo] A {<Va,Vb> E C. .

,i. Cm E C}. Then G[V x Vo] is the underlying graph of K.

Definition 4.11:

Let G[V, Vo] be the underlying graph of K E K[V x Vo l. Then the

connected subgraphs of G[V I x Vo] are called graph components of GI' 0E9] ,
,.

Notation: Graph components are denoted by G1, G2,...,G n. Denote the vertices .-

associated with Gr by Vj,r and Vo,-, V, gV1, Vo,r _ VO. In a component Gr there exists

r.- a path from each node to every other node and there is no path between any two nodes

from different components. Clearly G[VI x Vo] U Gr, Uvr,=V\, and
- t-. -r rf .

* .. _....
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UVor=Vo.

Theorem 4.12:

Let K EK[VI x Vo], K -<C>. Let G be the underlying graph of K. K is a

prime network iff G has a single component.

Definition 4.18: .'-'.

Let G[VI x Vo] be the underlying graph of K E KV 1 x Vol, K = <C>. Let

Cm E C and let Gr be a component of G[V x Vo]. Define the projection p of

Cm onto Cr as follows: p(Cm,Gr)A {<Va,Vb> E Cm <Va,Vb> E Gr}. ..-.

Theorem 4.14:

Let G[V x Vo] be the underlying graph of K E K[V1 x Vol, K = <C>. Let
" %

Cm E C and let {G,G 2,...,G.} be the set of all components of G[V I x Vol. %. _

Then Cm P(Cm,G) Up(Cm,G 2) U- .. p(Cm.Gn).

Definition 4.15:

Let G[VI x Vo] be the underlying undirected graph of K E K[VI x Vo, K =

<C>. Let G, be a component of G[V I x Vo]. Define the residue set modulo Gi

as follows: r(Gc)A {p(CbGi) I VCbCc}.

Definition 4.16

Let Gr be a component of the underlying graph G[VI x Vol of K C K[VC x Vol,

K == <C>. Let r(Gr) be the residue set modulo G , G, over V1,r '%'Or- then

<r(Gr)> C K[Vir x VO,r is called a component network of K denoted by

K(Gr).

In this section the background on single stage networks was presented. This work

was developed in [SeS851 and is presented here for completeness only (without proofs). 7 *

Single stage network was defined and some basic properties of single stage partitionable

networks were presented. The single stage network together with some other concepts

S 1 P bt. .Vt VP-- 1-.':- -.-.
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will be used to discuss multistage networks in the next section.

V Multistage Interconnection Networks

In this section of multistage partitionable networks will be studied. First a

multistage network model is developed and then the multistage partitionable intwork is

defined. Two types of partitionable networks are defined and two methodologies are

developed each of which can be used to construct its class of partitionable networks.

The material is presented for the case of partitionability of number of block networks

*: of power of two however it can easily be generalized to powers of any integer.

Definition 5.1:

Let C[V 1 x V'] and CIV 2 V ] be two C-sets. Define a map -y as follows:

V.'\, d 'X V11] X C[NV? N,, 2 C[V,' X V2]1v 01 c 1x 0g -- v0,_

i* Ca I Cb {u,,vj> I <uivj> E Ca, <uk,V1> C b, j =k} ,

Definition 5.2:

Let K' E xK[V[ . V'] be a single stage network. Let ur- l r be a nondestructive

correspondence. wrl' ,r E C[Vb'- x Vr], s(pr- l r) = Vr - 1, d(;r- l'r) = \.

Define o: , <{r-,r , Cr r r  .

Note that wr-lr o Kr 0 K[VL- x Vs]. -

Definition 5.8:

" Let {Kr r=O,1,...m-1} be a set of single stage networks, E2 E KIN r X VJ.

Let {rr I r=1,2,...m-l} be a set of correspondences. w'-"' E C[- 0 X

S(LLar- l r) = V - 1, and d(wr-l ' r) = V.
Define multistage network as follows: KO C ,1 c K ,' -, c . . hKrn-. .

***** .* .% *.** .. ft.*..*ft . .. *. ". ft'*" *,%" * . ...." " *-." ". . . .". "%, . . . **- . , "." "*" . . °
°

°•.'.-°•.-

. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
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Model similar to this was used by [Ben65] to study rearrangeable networks.

Notation: %

K" = K ' o wo 0 i+l 'i+2 o K'+ K), j i+1, K', = K1, j=i.

CO'= Ci  1 w0'+ y Ci+1 1yw'i+ l i+2 Y ...Cj , j i+1, Ci j =C i, j=i.

Assume all K' are reconfigurable. The case of K' fixed network can be handled by

absorbing it into the wr- l r and wr',r+l for the purpose of the analysis. For an example of

an arbitrary multistage interconnection network see Figure 2.

Definition 5.4:

Let Ca E C[Vi × Vol. If

(1) V ua E V1 3! Vb E V0 - <ua,vb> E Ca, (1:1), and

(2) V v, E V o  Bud E VI - <Ud,VC> E Ca, (onto),

then Ca is called permutation correspondence.

Note that this implies I Vl = IVoI (finite sets) but not V, - VO.

Definition 5.5:

Let K E K[V, x Vo], K <C>. If VC a E C, Ca is a permutation

correspondence then K is called permutation network.

In the rest of this paper the discussion will restricted to permutation networks in

particular the following assumptions are used hereafter.

(1) IV -- N.

(2) Kr ,r=0.1,...m-1 is a permutation network.

(3) wr
'
r

, r=1,2,...m-1 is a permutation correspondence.

(4) log 2 N = m.

(5) m 2.

%1* . S
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Note that (2) and (3) 0 Vfl - IvbI = N, r=0,1,...m-1.

Definition 5.6:

Let K = K°'m-1 be a multistage network. Fixing Kr in C' means selecting

correspondence C' E C' and holding the Kr in that state.

Note that K' fixed in Cr E Cr is equivalent to the fixed network Kr = <{Cr }>. Note

that K with K' fixed is equivalent to KWr- r < {C r> ,rr+ I

K r+ 'm -1 . The Kj, j - r networks are called free networks (stages).

The following development will discuss the class of a-partitionable networks. It

will be assumed that the number of "parts" is a power of two. This assumption is for

the ease of presentation only and it should be clear that all results here are valid (with

slight modifications) for number of "parts" of power of any integer base.

Definition 5.7:

Let K be a multistage network K - KOm- . K is simply partitionable if fixing "

K m-1 will produce two (data path independent) networks K8,m-2 and K °m 2

such that:
a.....:(1) s( O ' - 2  O 0m-2) sK'-2). :o,

(2) d(KO'm-2 a Ki 2) - d(KO°m-). .

(3) K,m-2 a K 'm -2 De KO,M- 2.

The networks KS,m-2 and K °,m  are called block networks. Note that for

permutation networks (as in this discussion) (3) implies (1) and (2).

Definition 5.8:

Let K be a multistage network K = Ko m- 1. K is simply partitionable

isomorphic if fixing Km -1 will produce two block networks KO,- 2 and K m - -

such that: "N
'., .'.. '. -

-NA%

v..'

9 , a'.

• ""a "a' ' '" °" ' , " ' '°''g "° '. ' 2''. - / " . ". " " " " o " € "o " " o o
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(1) K is simply partitionable with block networks KS 'm -2 and K ° m - 2.

(2) KS, m-2 K ?.m- 2.

Theorem 5.9:

Let K = Ko m-l, K E K[VO x Vm- 1 ] be a multistage network. Let K be simply
partitionable isomorphic with block networks Ko m - 2 E K[VO x o 2  a

VKm'm- 2 E KIVm -2

Then V o UV = V0 and UVV .
1,0 1,1 1 I '

Proof.
m-2 "~- -2,, .r

K 0'm - 1 permutation network and KO, a K ' - D c K0 'm - 2 =, V 0  '1r-

= V? and v- "v y- = V -.

Theorem 5 10:-

Let K KO m - 1, K E K[V° x Vm - ]] be a multistage network. Let K be simply

partitionable isomorphic with block networks K8 ,m - 2 E K[V o x Vm- "] and

1 K V ].2 Let Km - 1 be fixed in Cm -1 . Let V - 1 A
vM1vm-, m-,m-1} VM71 AVM-I

{va E V m I Vb E Oj' <VbVa> E O and 0,1 - {Va E 0

I Vb E Vm-' <Vb,Va> E Cm-}, j=0,1.

Then V m - 1 UV - V-1 and Vm-! .m-I vM-.1,0 "II 1 n o,o 0,Vo0

Proof:

(1): Theorem 5.9 o 2 n Vo 2 =--- 2
2m- VM- L-N M-

(2): (1) and w m -2mI permutation correspondence .VlIj ' lvf -'
v Vm-l.

(3): (2) and C m - 1 permutation correspondence o-' ovm - VM-

"°p

. "..

.5.- ." ")" " " "q . . . " " " " , " m." % *"_% . "% "% "% "%'



n
The following is an algorithm to synthesize simply partitionable networks. Let

K-KOm-i =Kow 1 oK1 o w 2  ... Km-i, be a multistage network. Let

IVO I = N, m = log 2N. The construction of the partitionable network will be given in

terms of constraints on Kr and the wrr+i correspondences.

Algorithm 5.11:

Let K = KOm- i be a multistage network. To construct a simply partitionable

network the following constraints on K' and on w'"' correspondences must be

satisfied.

(1) For r=O,1,...m-2, K' must have components K and K where K E
K[VIo x Vo,0 and K' E K[Vf, x Vo,,].

(2) K;:--r

(3) d(K - 1 ) O r- 1 ' 
(VJo × V, 0) = s(KL), r=m-lm-2 ... 1. Where

w(Vo, x v ij) A w f' (Voj x Vi,j) and A 0 c' A {Vb E d(,.) I

Proof: V b"

(1): Algorithm constraint (1) = K r has two components KL and KI,

r0,1,...m-2.

(2): (1) and Algorithm constraint (1) K° o w° ' o K' o .K- Cc

(KO o K ° ) ow °. ' o (K or K') o W 2
0 ... (Koq- 2 K - 2 ).

(3): (2) and Algorithm constraint (3) and property of o distributing over o

K0 ow ° ' oK' o .. K m- 2 Cc (KSa K ° ) ow ° ' o (KZ c'K) ow'0 2

(K- 2 orKm- 2) = (K o wO, 1 (Vgo x VI,0) o K a
1,2 (V v V?,0) o ... Ko o2) (K° o,,°' (v8. x v

1,2 (V .. x V2,.) o m-2 . ."..-...

!'..,~~~ 
~ K ..• -.- , . , , ,, . . .% .•. . % ," , 1 . . ,. . .- . . . .-

r d ' r r % ' ,r C '; ', eN,.' , " .e . tf ~ ,. . . '..'.'.. .'f, . ~ ,'/.'. .,',',,'. "• .. .
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(4): Theorem 5.10 shows that since Km- 1 is a permutation network any

Cm - 1 Cm - I can be used in fixing Km- 1.

(5): (3) and (4) = KO'm - I is simply partitionable.

(6): Algorithm constraint (2) = the components of K6 and K are

isomorphic =* K6 P K.

(7): (5) and (6) K° ,m- 1 is simply partitionable isomorphic network.

• ,.: -,"

A note on the notation in this section. Let K' [VIr x VbJ be a network, Vf =

tfv0,v,...vt_ }and Vb = {uO,ul,...ut n}. Let Ka E rVa × VEa1, be a component
network vra - {vi,vj,... and V..a . Since Kr is a permutation network

C-1~~~~~~~- newr iadVr.={X

therefore the component K r is as well, and so it is always possible to relabel the vertices

of V, and V0 in such a way that the component network has Vf a-- {v,,v,vk,...} and

Va = {u,,uJ,uk,...J. By proper encoding Vja = {PPP1 '''P(m-1)-r P,=0,1} and

V0a {qoq .''q(m_)_r q=O,1}. Consequently Ka can be identified as

K rKPop I P(Fn-l-r" I"'
p.4.

Definition 5.12: ,.
Let K° ,m'- 1 E K[V ° x Vm-1, be a multistage network. IfKp, P(m-i-r iS simply.

partitionable isomorphic with block networks Ko"- and

Ko r- i r=m-l,m-2,...1, then K is called recursively partitionablePONP, Pim- n)-(r+I)l

isomorphic network.

Theorem 5.18:

Let K = K° 'm - 1 , K E K[V? x Vm- '] be a multistage network. Let K° ' - ' E.

K[V! x Vo,'], be a simply partitionable isomorphic network with block

networks Ko r- 2  E KIV?0 x Vr-21 and Krj- 2  E KVj x r- 1

j=0,...2(m-l)-(r-2)- , r-r,m-1,...2. ,-

W %

" '-" _ . ' -':"':" ''---'''. 's~ :s s:u ''.'s" s- " ' ". ",."'-"" "- "" " . - - "- -'". "."- ' "- " '"-"-." % "- "* ' ."• ","- " ' "
a.',"
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Then v, LJv, - and V or-2 LbVr-2 Vr-2.

Proof:

Kjr-c K 0 - I c K) and K is a permutation network = V, -vO, 1

= and Vr-2 r-2 vr-2= Iij a d o,j,o -JVo,j,1 = o,1• '

Theorem 5.14: b

Let K = Ko m -l, K E K[VO x Vm - 1] be a multistage network. Let K °'r- be

simply partitionable isomorphic with block networks K J 2 E K[VPo x Vr-o],o
O~- r-21]K.r-1 -

and Kjr 2  E K[V~jA x with K fixed in CX' ,
;"~)(r2 vr- I v I~ ..

," j=O,1,...2(m-l)-(r- 2 )-1, r=m,m-1,...2. Let k {" r-

I Vb E Vob~k, <Vb,Va> E r-2,-I} and Vo- 1k = {a E VO, I Vb E l,,

<VbVa> E Cr 1  k=O,1.

Thenvr-1 .Urr-] = yr-I and Vr- 1 IL\Tr- vr-1'.
"-o. 9, o,,o "oo

Proof:
vr-2 L.r-2 = r-2

(1): Theorem 5.13 o,0 "oll = Vo,- "

(2): (1) and wr- 2 ,r-I permutation correspondence = V Urr- =Vr-1

(3): (2) and C r- ' permutation correspondence V 0, 0 "U0)11  ,-.

n
The notation of recursively partitionable networks will now change as follows. If

K °,r  is a simply partitionable isomorphic network then the block networks are

denoted as K ° '-  and K 1  - r)r=m-l,m-2,...0. If K rL' e o e 3 Pop I " P(rF1-1)-(r+1)0  "PON, P(m-3)-(r+I)]' Pop I Plm-q -r'

r=m-l,m-2,....0 is a nonprime network with two component networks then the

component networks are denoted as K' and K r

pop] P - *I**.,.%.%+"*



Algorithm 5.15:

Let K - K0, ' - 1 be a multistage network. To construct a recursively

partitionable network K = Ko m- l the following constraints on Kr and on wrr+

correspondences must be satisfied.

(1) For r=O,1,...m-2, Kr must have components KrPoP ' PO,--4-r PoPI P(m-1)-(r+I) ,O

and K' 
"."PoP2 P(KPm-1)-(r+I)l" C',

1*..L(2) K r  K' p,::PoPi " P(rn-i)-(r+iP0  
" O P(m- *-(r+0)""

(3) VKpoP P 3i-, B" two component networks Kpor- . P(0- (,+) ° and
PO D~.I- (dKP. O-)-rI0) U dK P(m-1)-(r+)1Kr1(d(I-r-1 U d(IK ':a_,Kpop, Ptm-,)-(,+I)l po I p(m-)-(,+, O) " p~m-q-(r+,)I))

(VOPoP, Pm-i)-r ,pop, P(m-)-r) - p S(K P(n-,i--r)'

r=m-l,m-2,...1.

Proof:

A. Show Pm-, holds. Pm-, K°"r-1 is simply partitionable isomorphic with -.

blocks KOm- 2 and K °'m 2 "

(1): Algorithm constraint (1) Kr p,_ has two components
Z*. ".'

Kr and K' r=O,1,...m-2.POP .. P- i)-(r+1) 0  " Pop) P(rw-- -(r+I)l+
uI'

(2): Do the following process for r=O,1,...m-2 if Kand .....

Kr P--r+ satisfy Algorithm (3) then form K' 1  p(_i_ using the
.-.-:*5'

a operation. Continue this process repeatedly until get components K.
--.

and KI.

(3): (2) and Algorithm constraint (1) z K ° o w° '1 o K' o .K m 2  C 2C

(Ko'aKI) ow ° ' o (Iq aKI) ow' 2 o (K aK n - ).

(4): (3) and property of o distributing over a * K ° o w° '1 o K' o ... Km- 2

Cc (o K °1) o wo,' o (Ka KI) ow'o (Ko aK )

- .& - iNX A~.%~
0 " .' , ,'. .' ..' ..' e ..' .' .' .,' ,'2 " # ,. o, , ., ' ." .' . ' .. ,- ' -'. ' ., ". .' ,. ." , " " , .., .N

" +.* " ,' .-' .7 . .,,,. '_+, _. K .,, .-,. .:+ .,, ,.. . ',,. '. ; . ', _. .' ", .. .'. ? .' '. v ' " .' ', " ."" " " "
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0X.. e
(K o ° ', (V 0 v o o K, owi,2 (v ),o xV0) o "'" Ko - ) a (K-

o w°' (V, x o K o w1'2 0 x Vi) o K- 2 ). 0 ."""

(5): Theorem 5.14 shows that since Km - 1 is a permutation network any

C' - 1 E Cm - I can be used in fixing K m- 1 .

(6): (4) and (5) =* KOm - is simply partitionable.

(7): Algorithm constraint (2) the components of KZ and K' are isomorphic

%K K."

(8): (6) and (7) K° 'r - 1 is simply partitionable isomorphic network.

O.' 'U

B. Show Pr-i assuming Pr holds. Pr-1: K '°' is simply partitionable" PoPI P(mn-i)-(r-i) '_. .

isomorphic with blocks Kr - 2  and K r- 2  r=m,m-1 .... 2.POPN "P(mn-i)-(r) 0  n PoPj 'p(in-i).(rWl "

(1): Algorithm constraint (1) * K N p( ,-_ has two components
P'_ f.Kk ~ ~--ki 0 a P~ ~-.) for k -- r-2,r-3,...0.PoP p~-){+) and K k  for-k

r=m,m-1,...2.

(2): For k=r-2,r-3,...0 do the following process. If Kkop1  p( .H_+ P and

K k satisfy Algorithm constraint (3) then combine them . "

using a to form Kkop1  p(m-I)-k" Continue repeatedly this process until

Kk is formed.
PON..

(3): (2) and Algorithm constraint (1) KOp P i C,
wo~x o x ,)_(,_.)pop I~ p P~t) (r-- ) -(-)O " '""-

(' 1 Vopop P(nm-)-(r-l) V ,Pop, P(M-I)-(-I) POPI P(M-I)-(--)

K r- 2  C C (, a Kp p ) o -

Pow'1 P(V - = P(m-i-(-a) VpoP p , P(m-1)-(r-i) 0

PON P(P PON p( ) p( ,)( , o,

'A

/r-2 T -2) -- ( ° ,o --
\'pOP pP-o( oK pdh P(nk-n -(r) pop P(W- )-( 0 .o

W )0lx0V, PoPOP p~m_ I) (€) 00 C) K ,.

S........ .........
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K r-2 1~()O or (KO,..Pm-)(~
PON ~~ ~ ~ P(-I-rn) opI . )M- (rr) l 0

w0 ' 1 P ~V pp... P(m-a)-(rI >x IPOPI ... oK PN P(k--I)-(r)I

Kr-2

(3.1): P, holds == K~OP10

r-ICK C c (KO( Dr~ 0 a ~ n1~rI1 K5
P0 1 O P~m-i)-r xo V1 ' 1  P(m-i)-r) POP * (-)(+

PO PPr-I- IPoPI. .P(m-i)-r

(KPOj .. P(m-1)-(r+1) 0 ar KPP ... 1)(+1

(3.3): Sust3uin (3 iKt (32 0 K0J P(Ox VI.P(ri)1

~ON P( k-I)-r1 0PoPi P(n-1) PO P(?-)-

C.-. 0KK Ccr(0

PON Pa , P(M-I)-(ri)o Pop, Pi mi)-(r ..-1)
1

1101 r0 V. .0

w or ,PP (K-*(rI x0 I.1 P P~m-ri) 0~-)(-~~j

r-2 )~r -2) r (K -

(KCP ,V oKk-I)0rl~ a K.-i)(r-...

(33: ustttng )(3-) int or.2 (J( O *)0

~~-o po P I~ P(m-)-(r)
1 JC'

O-i P w01  \Tg l) (-) .(r+I) ~ ~IPP1 P)(-i ii) P cP P'C-C.(-i

IJ=00  
'C-

O'l 0

CCC *. .. . .P~n-)(rIi*X .C.' Pni r+ j

~ . i~ AY.. .0
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._--p,

.,

,a (K°), o o,, (Kr- 2  ...

A 11

ij=00 P(m-I)-(r+-liJ w (VoPoPi P(m-l)-(-r+)ij .... 0po p(m-),+I)IJ) o,

(K o, I ,,,,,j o ... K r-2pp  ..p,-H--')

(5): The rest is similar to the proof of Pi-1 steps (5(8).
I'-

In this section the multistage networks were discussed. The multistage network model

was developed and then two types of multistage partitionable networks were defined.

Two methods were developed each synthesizing a class of multistage partitionable

,.A, network.

VI Conclusions

Two methods are used to speed up the execution of computational task. One is

new technology insertion and the other is the exploitation of parallelism in the

computation. To take an advantage of the parallelism in a task requires the utilization

of parallel computer architectures. At a certain high level of abstraction a

reconfigurable parallel computer system is represented as a graph structure where the

node represent processors, memories, or other devices and the labeled edges represent

the communication states of the network.

In this research a topological property of interconnection networks partitionability

was studied. The uses and advantages of partitionable networks are presented in a

number of publications and summarized in the introduction. In particular a general

graph/algebraic model of multistage network was developed. Two types of

partitionable multistage networks were formally defined. Two methods were developed,

,"-
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one for the synthesis of simply partitionable networks and another for the synthesis of

recursively partitionable multistage networks. The algorithms are presented for the

case where the number of block networks is a power of two, however they can easily be

generalized to the power of any integer.

•Job

ob

4.

P "

"N 

.4.
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Figure 1:
An example of an arbitrary single stage network.
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K3
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Figure 2:

An example of an arbitrary multistage network.
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